In the solid state, the cyclic amine in cis- $\left[\mathrm{PtCl}_{2}-\right.$ $\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NH}_{2}\right)\left(\mathrm{NH}_{3}\right)$ b blocks only one axial site, but in solution, free rotation around the $\mathrm{Pt}-\mathrm{N}$ bond is assumed and both sites should be partly protected, but less than in the di(cyclic amine) complex. This explanation for the large difference in the toxicity of cis $-\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NH}_{2}\right)_{2}\right]\left(\sim 100 \mathrm{mg} \mathrm{kg}{ }^{-1}\right)$ and cis- $\left[\mathrm{PtCl}_{2}-\right.$ $\left.\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NH}_{2}\right)\left(\mathrm{NH}_{3}\right)\right] \quad\left(\sim 10 \mathrm{mg} \mathrm{kg}^{-1}\right)$ does not seem sufficient. Other factors like hydrogen bonding might be important. The structure of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NH}_{2}\right)\right.$ $\left(\mathrm{NH}_{3}\right)$ has shown extensive hydrogen bonding of the NH_{3} ligand. In this crystal, the NH_{3} ligand forms three strong hydrogen bonds with the chlorine atoms $[\mathrm{N}(1) \cdots \mathrm{Cl}=3 \cdot 34-3.37 \AA]$ while the cyclic amine seems to play a minor role in the hydrogen-bonding system (Table 2). Therefore we suggest that this factor should be considered as a partial explanation of the toxicities of the cis- $\left[\mathrm{PtCl}_{2}(\right.$ cyclic amine $\left.)\left(\mathrm{NH}_{3}\right)\right]$ complexes.

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada and to the Ministère de l'Education (FCAR) for financial support.

References

Braddock, P. D., Connors, T. A., Jones, M., Khokhar, A. R., Melzack, D. H. \& Tobe, M. L. (1975). Chem. Biol. Interactions, 11, 145-161.
Bradford, J. P., Faggiani, R. \& Lock, C. J. L. (1981). Acta Cryst. B37, 243-246.
Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A 26, 71-83.
Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Cromer, D. T. \& W aber, J. T. (1965). Acta Cryst. 18, 104-109.
howard-Lock, H. E., Lock, C. J. L., Turner, G. \& Zvagulas, M. (1981). Can. J. Chem. 59, 2737-2745.

Lippert, B., Lock, C. J. L. \& Speranzini, R. A. (1981). Inorg. Chem. 20, 808-813.
Lock, C. J. L., Speranzini, R. A. \& Zvagulis, M. (1980). Acta Cryst. B36, 1789-1793.
Lock, C. J. L. \& Zvagulis, M. (1981). Inorg. Chem. 20, 1817-1823.
Melanson, R. \& Rochon, F. D. (1975). Can. J. Chem. 53, 2371-2374.
Melanson, R. \& Rochon, F. D. (1985). Acta Cryst. C41, 350-352.
Rochon, F. D. \& Kong, P. C. (1986a). J. Clin. Hematol. Oncol. Submitted.
Rochon, F. D. \& Kong, P. C. (1986b). Can. J. Chem. In the press.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Zanotti, G., Del Pra, A., Bombieri, G. \& Tamburro, M. (1978). Acta Cryst. B34, 2138-2141.

Structure of the Palladium(II) Sulfimide Complex trans-Dichloro(S,S-dimethylN -2-pyridylsulfimide)(triethylphosphine)palladium(II)

By Kenneth W. Muir and Luubica Manojlović-Muir
Chemistry Department, Glasgow University, Glasgow G12 8QQ, Scotland

(Received 6 April 1986; accepted 29 April 1986)

Abstract

PdCl}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}\right)\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{P}\right)\right], \quad M_{r}=449.7\), orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=8.247$ (1), $b=10.936$ (2), $c=21.707$ (4) $\AA, \quad U=1957.7$ (6) $\AA^{3}, \quad Z=4, \quad D_{x}=$ $1.526 \mathrm{~g} \mathrm{~cm}^{-3}$, Мо $K \alpha, \lambda=0.71069 \AA, \mu=13.9 \mathrm{~cm}^{-1}$, $F(000)=912, T=293 \mathrm{~K}, R=0.027$ for 2824 unique reflections with $I \geq 3 \sigma(I)$. The $\mathrm{Pd}^{\text {II }}$ ion has a trans-square-planar coordination, with $\mathrm{Pd}-\mathrm{P}=2.241$ (2) \AA and $\mathrm{Pd}-\mathrm{Cl}=2 \cdot 292$ (2) and $2 \cdot 309$ (2) \AA. The sulfimide is attached to the metal through the imide N atom with $\mathrm{Pd}-\mathrm{N}=2 \cdot 127$ (4) \AA.

Introduction. The title compound is one of a series of palladium and platinum sulfimide complexes synthesized by Davidson, Preston \& Spankie (1986). Its structure has been determined by X-ray analysis in order to establish the mode of attachment of the sulfimide ligand to the metal and also to assess whether structural changes occur in the sulfimide molecule on its coordination to palladium.

0108-2701/86/101294-03\$01.50

Experimental. Pale yellow needle, $0.50 \times 0.14 \times$ 0.10 mm , elongated along \mathbf{b}; Enraf-Nonius CAD-4F diffractometer, Mo X-rays, graphite monochromator; cell dimensions by least-squares fit to the setting angles of 23 automatically centred reflections with $11<$ $\theta<17^{\circ}$; intensities of 6310 reflections, with $2 \leq \theta \leq 30^{\circ}$ and $h 0 \rightarrow 11, k 0 \rightarrow 15, l-30 \rightarrow 30$, measured from continuous $\theta / 2 \theta$ scans of $(0.60+0.35 \tan \theta)^{\circ}$ in θ, increased by 25% at each end to assess background effects; corrections for Lp and absorption [empirical method of Walker \& Stuart (1983), transmission factors on F 0.81-1.09], no correction required for decomposition (111 and $2 \overline{2} 2$ standard intensities showed $<3 \%$ fluctuation about their means) or for extinction; $R_{\text {int }} 0.021$ for 621 independent reflections measured at least twice; 5688 independent structure amplitudes (point group 222 assumed); of these 2824 with $I \geq 3 \sigma(I)$, including 1030 Friedel pairs, used in the structure analysis. Patterson and difference syntheses; © 1986 International Union of Crystallography

Table 1. Fractional coordinates and isotropic displacement parameters (\AA^{2}) for non- H atoms
$U_{\text {Iso }}$ is the mean latent root of the anisotropic displacement tensor.

	x	y	z	$U_{\text {iso }}$
Pd	$0 \cdot 12871$ (4)	$0 \cdot 11190$ (3)	$0 \cdot 13961$ (1)	0.039
$\mathrm{Cl}(1)$	0.26133 (17)	-0.07215 (11)	$0 \cdot 14286$ (6)	0.063
$\mathrm{Cl}(2)$	-0.00863 (18)	0.29576 (12)	$0 \cdot 13673$ (6)	0.074
P	0.22127 (17)	$0 \cdot 16513$ (12)	0.23287 (6)	0.051
S	$0 \cdot 15390$ (14)	$0 \cdot 10409$ (11)	-0.01343 (5)	0.044
N(1)	-0.0789 (4)	-0.0647 (4)	-0.0177 (2)	0.053
N(2)	0.0485 (4)	0.0730 (3)	0.0485 (2)	0.041
C(1)	0.3203 (6)	0.0010 (5)	-0.0176 (3)	0.066
C(2)	0.2570 (8)	0.2372 (5)	0.0098 (3)	0.073
C(3)	-0.0761 (5)	-0.0101 (4)	0.0369 (2)	0.039
C(4)	-0.1953 (6)	-0.0290 (5)	0.0811 (2)	0.057
C(5)	-0.3185 (6)	-0.1091 (6)	0.0669 (3)	0.074
C(6)	-0.3220 (7)	-0.1628 (6)	0.0110 (4)	0.080
C(7)	-0.2010 (7)	-0.1417(5)	-0.0290 (3)	0.072
C(11)	0.3728 (10)	0.2862 (6)	0.2218 (3)	0.097
C(12)	0.5218 (9)	0.2382 (9)	$0 \cdot 1848$ (4)	0.115
C(21)	0.3226 (7)	0.0473 (6)	0.2766 (2)	0.076
C(22)	0.4072 (10)	0.0906 (7)	0.3356 (3)	0.114
C(31)	0.0728 (9)	0.2284 (6)	0.2842 (3)	0.087
C(32)	-0.0684 (10)	0.1348 (8)	0.2951 (3)	0.119

full-matrix least-squares refinement on $F ; w^{-1}=$ $\sigma^{2}(F)+2.25 \times 10^{-4} F^{2} ; \mathrm{H}$ atoms riding on bonded C atoms with $\mathrm{C}-\mathrm{H}=0.96 \AA$; final adjustment of 186 parameters [isotropic U refined for $\mathrm{H}(4)-\mathrm{H}(7)$, otherwise $U(\mathrm{H})=U(\mathrm{C})$, anisotropic $U_{i j}$ for all non- H atoms] gave $R=0.027, w R=0.029, S=1.2$; maximum $\Delta / \sigma=0.037$; final $|\Delta \rho|$ values $<0.47 \mathrm{e} \AA^{-3}$; chirality parameter (Rogers, 1981) $\eta=+1.03$ (8); this structural model is clearly superior to the alternative with $\mathrm{N}(1)$ interchanged with $\mathrm{C}(4)-\mathrm{H}(4)$ which gave $R=0.029, w R=0.032$ and $U=0.25(6) \AA^{2}$ compared with 0.05 (1) \AA^{2} for $H(4)$; neutral-atom scattering factors and complex anomalous-dispersion corrections from International Tables for X-ray Crystallography (1974); GX crystallographic program package (Mallinson \& Muir, 1985). Final atomic coordinates are presented in Table 1.*

Discussion. The crystals contain trans- $\left[\mathrm{PdCl}_{2}-\right.$ $\left.\left\{\mathrm{N}\left(\mathrm{SMe}_{2}\right) \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right\}\left(\mathrm{PEt}_{3}\right)\right]$ molecules (Fig. 1) separated by van der Waals distances. The Pd^{11} atom displays the expected square-planar coordination. $\mathrm{A} \mathrm{Cl}_{2} \mathrm{PN}$ donor set around the metal is completed by the attachment of the sulfimide ligand through $\mathrm{N}(2)$. Bond lengths and angles involving Pd (Table 2) agree well with those in other Pd^{11} complexes with trans- $\mathrm{Cl}_{2} \mathrm{PN}$ donor sets (Olmstead, Guimerans, Farr \& Balch, 1983; Keijsper, van der Poel, Polm, van Koten, Vrieze, Seignette, Varenhorst \& Stam, 1983). In particular, the $\operatorname{Pd}-N(2)$

[^0]bond length $[2.127(4) \AA]$ is virtually identical to those in trans $-\left\{\mathrm{PdCl}_{2}\left\{\mathrm{~N}\left(\mathrm{Bu}^{t}\right)=\mathrm{CHCH}=\mathrm{NBu}^{t}\right\}\left(\mathrm{PPh}_{3}\right)\right]$ [2.126 (5) and $2 \cdot 130(7) \AA]$ which, according to Keijsper et al. (1983), are the longest $\mathrm{Pd}^{11}-\mathrm{N} s p^{2}$ distances so far reported. These $\mathrm{Pd}-\mathrm{N}$ bonds are, of course, subject to the high trans influence of $\mathrm{P} R_{3}$ ligands (Manojlović-Muir \& Muir, 1974a).
The phosphine ligand adopts one of the low-energy conformations of the free PEt_{3} molecule (Solomun, 1979), with staggering about the $\mathrm{P}-\mathrm{C}$ bonds and a dihedral angle of 86.6° between the mean planes defined by the atoms $\mathrm{P}, \mathrm{C}(21), \mathrm{C}(22)$ and $\mathrm{P}, \mathrm{C}(11)$, $\mathrm{C}(12), \mathrm{C}(31), \mathrm{C}(32)$, the latter group being coplanar to

Fig. 1. A perspective view of the trans- $\left\{\mathrm{PdCl}_{2}\left\{\mathrm{~N}\left(\mathrm{SMe}_{2}\right) \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right\}\right.$ (PEt_{3})] molecule showing 50% vibrational ellipsoids for non -H atoms. H atoms are represented by spheres of arbitrary size.

Table 2. Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Pd}-\mathrm{Cl}(1)$	$2.292(2)$	$\mathrm{Pd}-\mathrm{Cl}(2)$	$2.309(2)$
$\mathrm{Pd}-\mathrm{P}$	$2.241(2)$	$\mathrm{Pd}-\mathrm{N}(2)$	$2.127(4)$
$\mathrm{P}-\mathrm{C}(11)$	$1.837(7)$	$\mathrm{P}-\mathrm{C}(21)$	$1.805(6)$
$\mathrm{P}-\mathrm{C}(31)$	$1.794(7)$	$\mathrm{S}-\mathrm{N}(2)$	$1.638(4)$
$\mathrm{S}-\mathrm{C}(1)$	$1.778(6)$	$\mathrm{S}-\mathrm{C}(2)$	$1.760(6)$
$\mathrm{N}(1)-\mathrm{C}(3)$	$1.328(6)$	$\mathrm{N}(1)-\mathrm{C}(7)$	$1.335(7)$
$\mathrm{N}(2)-\mathrm{C}(3)$	$1.395(6)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.389(6)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.377(7)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.348(9)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.342(9)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.559(11)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.533(8)$	$\mathrm{C}(31)-\mathrm{C}(32)$	$1.569(10)$
$\mathrm{Cl}(1)-\mathrm{Pd}-\mathrm{Cl}(2)$	$179.1(3)$	$\mathrm{Cl}(1)-\mathrm{Pd}-\mathrm{P}$	$92.2(1)$
$\mathrm{Cl}(1)-\mathrm{Pd}-\mathrm{N}(2)$	$90.1(1)$	$\mathrm{Cl}(2)-\mathrm{Pd}-\mathrm{P}$	$88.0(1)$
$\mathrm{Cl}(2)-\mathrm{Pd}-\mathrm{N}(2)$	$89.8(2)$	$\mathrm{P}-\mathrm{Pd}-\mathrm{N}(2)$	$175.9(1)$
$\mathrm{Pd}-\mathrm{P}-\mathrm{C}(11)$	$107.5(2)$	$\mathrm{Pd}-\mathrm{P}-\mathrm{C}(21)$	$116.6(3)$
$\mathrm{Pd}-\mathrm{P}-\mathrm{C}(31)$	$115.4(3)$	$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(21)$	$105.6(3)$
$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(31)$	$105.5(4)$	$\mathrm{C}(21)-\mathrm{P}-\mathrm{C}(31)$	$105.3(3)$
$\mathrm{N}(2)-\mathrm{S}-\mathrm{C}(1)$	$108.7(3)$	$\mathrm{N}(2)-\mathrm{S}-\mathrm{C}(2)$	$101.1(3)$
$\mathrm{C}(1)-\mathrm{S}-\mathrm{C}(2)$	$99.6(3)$	$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(7)$	$117.4(5)$
$\mathrm{Pd}-\mathrm{N}(2)-\mathrm{S}$	$123.8(2)$	$\mathrm{Pd}-\mathrm{N}(2)-\mathrm{C}(3)$	$121.9(3)$
$\mathrm{S}-\mathrm{N}(2)-\mathrm{C}(3)$	$112.2(3)$	$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{N}(2)$	$117.9(4)$
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$122.5(5)$	$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$119.5(5)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$117.5(5)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$119.6(5)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$119.5(6)$	$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$123.4(6)$
$\mathrm{P}-\mathrm{C}(11)-\mathrm{C}(12)$	$111.1(6)$	$\mathrm{P}-\mathrm{C}(21)-\mathrm{C}(22)$	$115.4(5)$
$\mathrm{P}-\mathrm{C}(31)-\mathrm{C}(32)$	$110.4(5)$		

within $0 \cdot 10 \AA$. The orientation of the PEt_{3} ligand with respect to the Pd coordination plane, with $\mathrm{Cl}(1)-$ $\mathrm{Pd}-\mathrm{P}-\mathrm{C}(21)=-9.8$ (3) and $\mathrm{Pd}-\mathrm{P}-\mathrm{C}(21)-\mathrm{C}(22)=$ $171.0(6)^{\circ}$, resembles closely those found in trans$\mathrm{Pt}^{1 \mathrm{II}} \mathrm{Cl}_{2}\left(\mathrm{PEt}_{3}\right)$ species (e.g. Manojlović-Muir \& Muir, 1974b) but does not seem to have been described previously for $\mathrm{Pd}^{\mathrm{II}}$.

The bonds radiating from the sulfimide $\mathrm{N}(2)$ atom deviate slightly from planarity, $N(2)$ lying 0.143 (4) \AA from the PdSC(3) plane. The $\mathrm{N}(2)-\mathrm{S}$ and $\mathrm{N}(2)-\mathrm{C}(3)$ bonds are roughly normal to the Pd coordination plane $[\mathrm{Cl}(1)-\mathrm{Pd}-\mathrm{N}(2)-\mathrm{S}=-86.8$ (3), $\quad \mathrm{Cl}(1)-\mathrm{Pd}-\mathrm{N}(2)-$ $\left.\mathrm{C}(3)=75.3(3)^{\circ}\right]$. The $\mathrm{N}(2)-\mathrm{S}$ distance $[1.638$ (4) $\AA]$ is consistent with some multiple-bond character. This bond nearly eclipses $\mathrm{C}(3)-\mathrm{N}(1)[\mathrm{S}-\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{N}(1)$ $\left.=9.3(4)^{\circ}\right]$. The $\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{S}-X$ torsion angles are $-91.7(4)$ and $164.2(4)^{\circ}$ for $X=\mathrm{C}(1)$ and $\mathrm{C}(2)$, respectively. The $\mathrm{N}(2)-\mathrm{S}$ and $\mathrm{N}(2)-\mathrm{C}(3)$ bond lengths, the torsion angles across these bonds and the S -$\mathrm{N}(2)-\mathrm{C}(3)$ bond angle are in excellent agreement with corresponding values in the uncomplexed sulfimides $\mathrm{Me}_{2} \mathrm{~S}=\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{4} X, X=m$ - or $p-\mathrm{NO}_{2}$ (Cameron, Freer \& Maltz, 1981). Evidently the Pd atom has little effect on the bonding or conformation of the suifimide ligand. This conformation is such that the lone pairs on S and $\mathrm{N}(1)$ both point away from the Pd atom, the $\mathrm{S} \cdots \mathrm{N}(1)$ intramolecular distance [2.665 (4) Å] being notably short. Finally, Cameron et al. (1981) have shown that
the protonated sulfimide cation, $\left(\mathrm{Me}_{2} \mathrm{~S}=\mathrm{NH}-\mathrm{C}_{6} \mathrm{H}_{4}-\right.$ $\mathrm{Cl}-p)^{+}$, adopts a different conformation from those of the unprotonated sulfimide molecules or from that of the Pd complex, even though the site of protonation, like that of metallation, is the imide-N atom.

We thank the SERC for help with the purchase of equipment.

References

Cameron, A. F., Freer, A. A. \& Maltz, A. (1981). Acta Cryst. B37, 1608-1613.
Davidson, J. L., Preston, P. N. \& Spankie, S. A. (1986). Personal communication.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Kelusper, J., van der Poel, H., Polm, L. H., van Koten, G., Vrieze, K., Seignette, P. F. A. B., Varenhorst, R. \& Stam, C. (1983). Polyhedron, 2, 1111-1116.

Mallinson, P. R. \& Mulr, K. W. (1985). J. Appl. Cryst. 18, 51-53.
Manojlović-Muir, LJ. \& Muir, K. W. (1974a). Inorg. Chim. Acta, 10, 47-49.
Manojlović-Muir, LJ. \& Muir, K. W. (1974b). J. Chem. Soc. Dalton Trans. pp. 2427-2433.
Olmstead, M. M., Guimerans, R. R., Farr, J. P. \& Balch, A. L. (1983). Inorg. Chim. Acta, 75, 199-208.

Rogers, D. (1981). Acta Cryst. A 37, 734-741.
Solomun, T. (1979). PhD Thesis, Univ. of Glasgow.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A 39, 158-166.

Acta Cryst. (1986). C42, 1296-1298

The Structure of cis,trans,cis-Diaquabis(5-methyl[1,2,4]triazolo[1,5-a]pyrimidine- N^{3})-bis(thiocyanato- N)iron(II)

By Marina Biagini Cingi, Anna Maria Manotti Lanfredi and Antonio Tiripicchio
Istituto di Chimica Generale ed Inorganica, Università di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, 43100 Parma, Italy
and Joost P. Cornelissen, Jaap G. Haasnoot and Jean Reedijk
Department of Chemistry, Gorlaeus Laboratories, State University Leiden, PO Box 9502, 2300 RA Leiden, The Netherlands

(Received 21 January 1986; accepted 17 April 1986)

Abstract

C}_{14} \mathrm{H}_{16} \mathrm{FeN}_{10} \mathrm{O}_{2} \mathrm{~S}_{2}, \quad M_{r}=476.31\), monoclinic, $\quad C 2 / c, \quad a=15.765(5), \quad b=7.909(2), \quad c=$ 16.211 (7) $\AA, \beta=94.68$ (3) ${ }^{\circ}, V=2015$ (1) $\AA^{3}, Z=4$, $D_{m}=1.55, \quad D_{x}=1.57 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Mo $K \alpha, \quad \bar{\lambda}=$ $0.71069 \AA, \mu=0.979 \mathrm{~mm}^{-1}, F(000)=976$, room temperature, $R=0.036, w R=0.042,1088$ independent observed reflections. The structure consists of Fe^{2+} ions pseudo-octahedrally coordinated by two water

0108-2701/86/101296-03\$01.50
molecules (cis), two N -bonding thiocyanate groups (cis) and two N_{3}-coordinating 5 -methyl[$\left.1,2,4\right]$ triazolo-[1,5-a]pyrimidine $\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4}\right)$ ligands (trans). The $\mathrm{Fe}-\mathrm{O}$ (water) bonds are $2 \cdot 156$ (5) \AA, the $\mathrm{Fe}-\mathrm{N}$ (thiocyanate group) bonds are $2 \cdot 109$ (5) \AA and the $\mathrm{Fe}-\mathrm{N}$ (organic ligand) bonds are $2 \cdot 225(5) \AA$. The organic ligands are associated, by stacking interactions, in pairs arranged in chains running along the [011] direction.
(c) 1986 International Union of Crystallography

[^0]: * Lists of structure amplitudes, anisotropic displacement parameters, H -atom parameters and torsion angles have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 43032 (15 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

